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SUMMARY
(6025

The basic theory of space-charge flow is described, and three gen-
eral methods of solution are discussed. Specific space-charge-flow ge-
ometries are described in detail; these include flow between coaxial
cylinders, concentric spheres, coaxial cones, hyperbolic flow, flow be-
tween inclined planes, and circular flow. Since all the solutions dis-
cussed are for space-charge-limited flow, a discussion of partial space-
charge flow is presented. The Pierce method of electrode design is de-
scribed, and some practical limitations of this method are discussed.
Electrode shapes for various space-charge flows are shown.

INTRODUCTION

The performance and design requirements of electrostatic rocket
engines have brought a new emphasis to the theory of space-charge flow.
Considerable reductions in engine size and substantial improvement in
engine efficiency may be gained by the use of ion and charged-particle
accelerators operating with current densities at or near the space-
charge limit. Such high current densities bring sbout definite space-
charge effects, so that Poisson's equation must be used to describe the
potential distribution in the engine accelerator. In addition to the
requirement of high current density, the electrostatic rocket engine
must be capable of operating for very long times, of the order of years
for interplanetary space missions. Such long-duration operation re-
quires near-perfect "jon optics" to keep electrode sputtering erosion
to reasonable limits. Since the ions, or charged particles, are accel-
erated to kinetic energies in the range from a few thousand to hundreds
of thousands of electron volts, each ion striking an electrode may
sputter away several electrode atoms. For these reasons, some estimates
of the degree of perfection of ion optics place an upper limit of ion
impingement of less than 0.01 to 0.1 percent of the total ion beam to
keep erosion to a reasonable level.
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The space-charge-flow problem in electrostatic rocket engines is
characterized by the necessity for the ions, or charged particles, to
leave the engine permanently through an open exhaust aperture, as shown
in sketch (a):
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Since the ion source is at a potential considerably higher (or lower,
for negative ions) than the potential of free space, the equipotential
lines in the accelerator will tend to bow, or bulge, out of the exhaust
aperture. This aperture effect not only reduces the current carrying
capacity of the accelerator, but alsc introduces another complicating
boundary condition on the space-charge-flow equations.

The complexities of the space-charge flow in electrostatic rocket
engines indicate that complete analytical design of space-charge-flow
accelerators will be very difficult. For this reason, recourse has been
made to analog or empirical methods (i.e., experimental "cut-and-try").
Not only are these methods inadequate for extrapolation or scaling of
engine designs, but in addition they do not offer sufficient basic under~
standing of space-charge flow to allow positive prediction and evaluation
of the effects of configuration changes in design optimization studies.

It is evident that a convenient, universal method for the analytic
solution of the space-charge-flow problem would be of great value in the
design of electrostatic rocket engines. The survey of existing literature
on space-charge flow reported herein has yielded no completely universal
analytic method, but some progress has been made in that direction.



The first section of this report is devoted to a discussion of the
three methods of sclution that have been used to date for space-charge-
flow problems, The remainder of the section on space-charge-flow theory
is a compilation of analytic solutions for specific space-charge-flow
geometries found in the literature and also includes a calculation of
the flow between coaxial cones that was not previously available.

Since the analytic sclutions to space-charge flow usually assume
that the flow fills all space, it is necessary to take a segment of this
flow and to provide electrodes external to the ion beam to force the flow
to conform to the theoretical pattern. The second section of this report
is devoted to the problem of electrcode design. The method of Pierce is
described and is applied to a number of space-charge-flow geometries to
obtain electrode shapes. Some of these shapes are accurately recomputed
using techniques found in the literature, and others appear not to have
been computed previously. Some practical limitations to the application
of space-charge flow theory and the Pierce method of electrode design
are discussed.

The parameters of the various space-charge flcws examined in this
report may be used to determine the theoretical performance of electro-
static rocket engines. An analysis is made in reference 1 in which the
various space-charge flows are compared in terms of relative engine per-
formance.

The work described in this report was carried out as part of the
electrostatic propulsion research program of the NASA Lewis Research
Center.

SPACE-CHARGE-FLOW THECRY

In the study of the performance of ion engines the analysis of
space-charge Tlow is very important. Since the early studies of Child
(1911, ref. 2) and Langmuir (1913, ref. 3), who solved the problem of
space-charge-limited flow between parallel plates more than half a cen-
tury ago, there have appeared extensive publications on space-charge ef-
feets in certain new geometries. Most of the early analyses (refs. 2
to 5) have been concerned with one-dimensional cases, and it has been
only in recent years that two- and three-dimensional cases were solved
or solutions were suggested (refs. 6 to 13).

In most ion engines, ions move as a very nearly continucus fluid in
an electrostatic field in which the magnetic force is negligible. The
flow of ions is assumed to form a system of curves (streamlines) filling
a portion of space such that the velocity 1s a single-valued function of
position.



The fundamental differential equations governing steady-state space-
charge flow are:

Poisson's equation:

o = £ (1)
o
Equation of motion:
m% = g (2)
Conservation of charge:
v+ 3=0 (3)

(Note that @ = o, - ¢.)
It is mathematically convenient to assume that the flow is space-
charge limited. In this case the velocity and electric field will both

be zero on the emitting surface. Under these conditions it can readily
be shown (ref. ¢) that the flow will be irrotational; that is,

XV =0 (4)

In this case, the velocity can be expressed as the gradient of a
scalar action function:

Vo= W (5)
Combining equation (5) with the vector identity v = (Vv + 7)v yields
Vo= (W )W ()

Application of equation (4) to the identity

(M« DW= 3 AMZ - W x (7% W)

gives

7= % o) (1)



Substitution for ¥ from equation (2) yields

T = (8)

B

Hence,

|

(?’W)2 = (39)® (9)

where the constant of integration is included by letting ¢ = Py = @

The five equations used to formulate space-charge-flow problems are:

Hamilton-Jacobl equation:

2 2
(w? = (D)o (9)
Poisson's equation:
2
v = £ (1)
€o
Total ion energy:
% me - qd = 0 (10)
Conservation of charge:
v J=0 (3)
Vector current density:
d = pv (11)

Analytical Methods

Historically the first analytical solutions of the space-charge-flow
prcblem were for particular cases of rectilinear flow between specified
equipotential surfaces. These are flow between infinite planes (refs. 2
and 3), flow between coaxial cylinders (refs. 3 and 4), and flow between
concentric spheres (ref. 5). One of the first attempts at a general so-
lution of the space-charge-flow equations was made by Spangenberg (ref. 6)
following his formulation of the general eguations in terms of the action
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function. His multidimensional analysis yields a partial differential
equation in terms of the action function, which is much too unwieldy
for exact solution.

In 1949 Meltzer (ref. 7) introduced a unique approach to the solu-
tion ¢f space-charge-flow problems. By his method the space-charge-
flow parameters are expressed in terms of the acceleration and velocity.
Meltzer shows that there are two conditions necessary for a space-charge
solution to exist; namely,

TXV =0 (12)
v (¥ V) =0 (13)

Using the relation ¥V = (¥ - 7)¥ to obtain the acceleration from a pre-
viously assumed velocity, v and Vv are tested in equations (12)

and (13). If they satisfy (12) and (13), they define a type of space-
charge flow whose parameters are as follows:

o = (B)eotv ) (14)
" G

o - @56%. a2 (18)
3= (@)oo - D (a7)

This method leaves one big equation unanswered. How may a velocity
function be found that will satisfy equations (12) and (13)? The search
for an answer to this question led Meltzer (ref. 11) and later Rosenblatt
{(ref. 12) to develop the trajectory action function method, which is more
readily applicable to space-charge-flow problems than any previous
method.

In the action function method of Meltzer and Rosenblatt it is as-

sumed that the flow of charged particles is laminar, and that an orthog-
onal curvilinear coordinate system

E(X,Y)Z) (188)



n(x,¥,2) (18b)
K(XJYJZ) (180)

can be found such that the ion trajectories are completely described by
variation of the parameters 7 and ¢ (i.e., 1 = const. and { = const.
specify a particular trajectory). Then the orthogonal surfaces

£ = constant will be surfaces of constant action, and the Hamilton-
Jacobi equation (9) becomes

2 - @

ht & m

where hl 15 the scale Ffactor corresponding to the coordinate &. Rosen-

blatt shows that if a function T 1is defined such that

r = hi@ (20)

the general differential equation for space-charge flow can be written

rl/z[gag(c %’E) + BP] = K(7,t) (21)
vhere
hohz
¢ = = (22)
hoh
B = ( i1{>v2<§%) (23)
hphy . fm
K(n,¢) e I¥zg (24)

The differential equations for several known space-charge-Tlow cases are
derivable from equations (21), (22), (23), and (24). The variables ¢,
n, and t, the scale factors, and equations (21) to (24) are tabulated
for certain of these cases in table I. It is still necessary, however,
to apply the classical technigues to obtain final sclutions.



Particular Solutious of Space-Charge Flow

It is of interest here to discuss particular solutions of the differ-
ential equations listed in table I and to express these solutions in
nomographic form. In addition to these previocusly listed space-charge-
flow solutions, there are two other known analytic space-charge flows in-
cluded in the following sections.

Rectilinear flow between infinite plane electrodes. - Sketch (b)
illustrates rectilinear flow between plane electrodes.
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(b)
In 1911, Child (ref. 2) published the solution to this case. From his

analysis he obtained what is now known as the Child-Langmuir space-
charge law:

3/2

N R )

where Do is the potential at x = 0. When the constants are written:

% e ‘/%9- - 5.467x10°8 a~1/2



where A 1is the molecular weight per ionic charge, equation (25) be-
comes

3 = 5.467x107° A'l/z(@o - )02t (26)

A nomogram relating J, (qb - q), A, and x 1is shown in figure 1. The

velocity v as shown in equation (10) is obtained for this and each
subsequent case from the nomogram in figure Z.

Rectilinear flow between coaxial cylinders is shown in sketch (¢).

Diverging flow Converging flow

()

In 1913 a paper by Langmuir (ref. 3) was published that contained an
approximate solution for this type of flow. The current density and
current per unit length may be written

j = 5.467007° A'1/2<@O - )3/ 2272 (27)

w (28)

ey

_ 2ary = 3.454077 A1/2(q_ - §)3/2(xp?)

where Pg is the potential at T, and [ is a nondimensional funection

of r expressed as a power series in ln(r/ro).

In 1923 an improved solutlion by Langmuir and Blodgett (ref. 4) was
published. Two series representations for § were given. One of these
most useful for electrode design is:
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2

To

+ 0.0167(in 31)5 . ] (29)

r -1/2 T
B = (—) Kln i) + O.l(ln -—>
To L Tq
The Langmuir function 82 is plotted as a function of r/ro in fig-

ure 3 and is tabulated in table II. Note that Bz for r/rO > 1 is

for divergent flow (from the inner to the outer cylinder), and B2 for
r/ro <1 1is for convergent flow. The numbers in table IT were computed

from equation (29) using all 14 coefficients given by Langmuir in refer-
ence 4. These numbers agree well with those shown by Langmuir. Nomo-
grams relating J/l, (@o - $), A, T, r/ro, and v are shown in figures
2, 4, and G.

Rectilinear flow between concentric spheres, - Sketch C also depicts
rectilinear flow between concentric spheres. The sclution for this case,
due to Langmuir and Blodgett (ref. 5), was published in 1924. The cur-
rent density and total current may be written

3 = 5.487x1078 A"l/z(q)o - )3/2p-2,-2 (20)
J = anrfy = 6871077 AL/2(g - 9)3/2a-2 (31)

where o 1is a nondimensional function of r expressed as the power
series

2 3 4
@ = [(ln —r—) - O.5(1n 1) + 0.075 (ln l) - o.014(1n 3—) + .. :'
T Ty Tq To
(32)

2

The Langmuir function o 1is plotted as a function of r/ro in fig-

ure 6 and is tabulated in table III. As in the cylindrical flow case,
&2 for r/ro > 1 corresponds to diverging flow and @2 for r/ro <1

to converging flow., The numbers in table IITI were computed from equa-
tion (32) and agree well with Langmuir's data.

Nomograms relating J, (g, - @), 4, r/ry, and v are shown in

figures 2, 7, and 8.
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Circular flow. - Circular flow is depicted in sketch (d).
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The solution to this case is given by Meltzer in reference 11. The cur-
rent density may be written

3 = 1.23%107 7 A_l/z(cpo

-2
- @)S/Z(f sin %?) (33)
where ¢ 1is the potential at (r,0) and j 1s the current density in
the current sheet r. Figure 9 is a nomogram relating J, (@O - @), A,

r, and 6. The velocity can be obtained from figure 2. This flow has
several peculiarities that are not evident from equation (33). Since

these are discussed in reference 11, they will only be mentioned here.
First of all, the ions accelerate through an angle of 60° and then de-
celerate, reaching zero velocity at 120°. Since the equipotentials do
not lie along a radial plane except at 6 = 0° and 6 = 120°, the ve-
locity varies along any radial plane in the flow. Finally, along amny

radial plane the current density J 1is proportional to l/r5. This
poses a very difficult problem in ionizer design.

If a beam is considered that is bounded by an inner trajectory of
radius a and an outer trajectory of radius b, the current per unit
length may be written

4 -2
—Z‘I = 3.08x1078 A‘l/z(%)( - §z>(cpo - )32 (sin 3—29> (34)

This equation is used in the electrode design section.
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Hyperbolic flow. - Hyperbolic flow is shown in the following sketch:

¥y
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The solution to this case was obtained by Meltzer (ref. 7) and later by
Rosenblatt (ref. 12). The space-charge-limited current density may be
written:

j = 4.92x1077 A'l/2(¢o - @)3/21«'2 (35)

vhere ¢ 1s the potential at radius r. This equation is expressed in
terms of a nomogram in figure 10, Tt is interesting to note that J
along any given trajectory is a function only of the radial component of
the trajectory. If the bounding trajectory is defined by the equation
y = (%/X), the current per unit length for one quadrant may be written

oy

o\=3/2
I aozmao” Ao - @)3/2(%2 + 2;) (36)
1 0 XZ

wvhere Z is measured normal to the (x,y) plane.
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Flow between two inclined planar electrodes, - The configuration of
two inclined planar electrodes presents a very interesting problem of
space-charge flow applicable to ilon engine design.

Walker (ref. 9) solved this problem by first assuming negligible
space charge. In this case the potential distribution between two in-
clined planar electrodes is known and can be written:

P
o =0 (37)
o)

By substituting (37) into Hamilton-Jacobi equation (9) in polar coordi-
nates, equation (9) then becomes

SR (=

Because the right side of equatiocn (28) is independent of 1, so must be
also the left side of (38). Therefore, Walker (ref. 9) sought a solution
of the action function in the form

W = rz(8) (39)

By substituting (39) into (38) the Hamilton-Jacobl equation becomes

©
22 4 12 _ (ﬁ _2>9 (40)
m o
where 1z = %¥ and z' = % %%. Equation (40) was solved by Walker in
the form of a power series,

The components of velocity are then given by

Hence,

&
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and after integration the trajectory equation is obtalned:

6
T Z
I‘O ) / 2! (41)

0

where (rO,O) is the initial point of a particular trajectory, and (r,6)

are the coordinates of the remainder of that particular trajectory
(sketch (f)).

/ﬁ-Equipotentials

Equipotentials—r\\
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The angle between the trajectory and the normal to equipotential is
given by

dr
r dé

tan w = = é% (42)

In the case of space-charge flow between two inclined planar electrodes,
Walker assumed an action function in the form

W = rg(8) (43)

By substituting (43) into Hamilton-Jacobi equation (9), egquation (9) be-
comes

2
gt + g'2 = (;f)@ (44)



Now the left side of equation (44) is a function of © only; and,
hence, ¢ must be a function of & only.

By expressing Poisson's equation (1) in polar coordinates, it
follows that

p = (45)

"
S eo® g
r r2
and
j B €O®ng
6 r2

By substituting these components intoc the equation of conservation of
charge (eq. (3))

L Odp +15J'9 .
Vedrwm ikt ot
Walker obtained
d " 1 1 _

By eliminating ¢ from equations (44) and (46) an ordinary fourth-
order differential eguation in g is obtained in the form

e "e - 2
g gf'[4(g_'__ + l) + .g_.g_g:l - g =20 (47)
g g'

Any solution of this equation defines a possible motion. 1In a fashion
similar to that in the space-charge-free case the trajectory equation

is given Dy
6
r g
— = —= d6 48
T exp/g, (48)
0
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and the angle between the trajectory and the normal to the equipotential
is given by

dr
r df

tan @ = = é% (49)

Ivey (ref. 10) made a detailed calculation of this problem and his re-
sults of equations (41), (42), (48), and (49) are presented in figures
11 and 12,

The space-charge-limited current density of the emitter as calculated
in reference 10 is

1/2  z/2
) e e (50
o

where F(a) could be defined as a perveance function depending on the
magnitude of the angle o shown in sketch (f). At any place in the
flow the current density may be written

Jo(€)

J = r7ro

Substitution into equation (50) yields

NECEE Gl

r O

where ¢ 1s the potential difference between 6 = 0 and 6, and the
range of 6 is 0O < 6 < a. A nomogram of equation (51) is shown in

figure 13 where é eov-%q = 5.467x10"5 A'l/2 for singly charged ions.

The normalized potential distribution for space-charge-limited flow as
a function of normalized angle 9/@ is shown in figure 14 for several
values of «. It is interesting to note that for « = O the potential
distribution is that for two paralliel planes and, further, that the po-
tential distribution for o < n/2 is not greatly different from that
for o = 0.

Flow between two coaxial right circular conical electrodes whose
vertexes coincide. - In this configuration it is also assumed, as in the
case of the flow between two inclined planar electrodes, that the end
effects can be taken care of in all directions. Walker has outlined the




17

procedure for the solution of this problem for the space-charge flow
(see sketch (g)). The authors of this paver assumed an action function
in the form

W=1r- s5(8) (52)

© =9 =0
/ P

Kino and Harker (ref. 13) in their analysis used a similar form of action
function W = v . s(9) and investigated cases for n < 1. Some of the
cases investigated in their paper show beam trajectories that pass through
potential minimums (accelerate-decelerate system). In the case of

W=r1 . s(8), investigeted herein, the beam trajectories are continuously
accelerated (accelerate system).

By substituting (52) into Hamilton-Jacobi equation (9) this equa-
tion becomes

s+ g1 = (—Eﬁ>;@ (53)

m

As in the case of the flow between two inclined planes, it was deduced
that ¢ has to be a function of 6 only.
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By expressing Poisson's equation (1) in spherical polar coordinates,
it follows that

€6 '
SRASY SR -
P 1:Z(tan 6 " (P) (54)

The components of the vector current density are

€S [ ot \
Jr =73 (tan8+@)
and ? (55)
. EOS, Q’ v)
Jo T Tz (tan g T o

IThe conservation of current equation (3) in spherical polar coordinates
is

vV +

7 dr rtan 6 1 90 )

- 2J 33 J dJ
;o ( r r + 2] - 1 9) 0 (56)

Substituting equation (55) into (56) gives then the condition for which
div J 1s zero, namely, when
cot 0(2p"s' + @'s") + @"'s' + ¢"s" - p's’ =0 (57)

By eliminating ¢ from equations (53) and (57) & fourth-order nonlinear
ordinary differential equation in s is obtained in the form

tr n " 1
s 28 s (s + s
s"' =- cot GF(SW +s') + S—T(s"+-sﬂ ——T—Fsm + - q
s s 2

o

S”Y
+ s( ; ——) Jss" (s8)

Equation (58) was solved numerically for s(6) and s'(6), which were
then used for determination of ion trajectories.

The components of velocity are
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and
B - R
e r of
and
&2 g
T S
and by integration
6
= = exp = as (59)
r, S
0

The angle between the trajectories and the normals to the equipotentials
is given by

dr S
tan 7 =7 a6 - 5’ (60)
The current density is given by
. .2 .2
9 = JJT * Jg (61)

To obtain more accurate values of Jg, the current density at the emitter,
the current density Jg at the collector was first calculated from
equation (61). The current density at the emitter was then calculated

from
. . (T 4 2 @5/2
Jo = Ja(}—) =3 eov—mg = s(ap - o) (62)
o T

o}

The solutions of ion trajectories and the angle between the trajectories
and the normals to the equipotentials are presented in figures 15 and 16,
respectively. A nomogram of eguation (62) is given in figure 17. The
normalized potential distribution as a function of normalized angle

(6 - al)/(az - a,) for several angles (an - ay) is shown in figure 18.
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Partial Space-Charge Flow

As early as 1920, Jaffe considered the plane diode under partial
space-charge conditions where the current is less than space-charge
limited, sometimes called temperature or flow-rate-limited conditionm,
(ref. 14). Since that time there have been several papers on this sub-
ject, two of which will be noted here. Brubaker (ref. 15) and Ivey
(ref. 18) derived the equations governing the flow of electrons or ions
under partial space-charge conditions independently at about the same
time. Brubaker made use of normalized variables representing current
density, voltage, distance, and emitter field, so that these variables
range between zero and unity as the current density varies from zerc to
the space-charge-limited value. He defined the normalized variables as

5. Current density - J

~ Space-charge-limited current density g

3

<

= Voltage at distance X from emitter _ X
- Voltage at collector, at distance X, from emitter ~ vy

= Distance from emitter _ X

~ Emitter-collector spacing X

a

_ Gradient at emitter under influence of space charge _ (Xz)(dV)
X=0

v = Gradient at emitter in absence of space charge Vo \aX

The previously mentioned assumption still holds, namely, zero velocity
cf the particles at the emitter.

The potential distribution and electric field are fully defined by
equations (63) and (64):

16(37°/2 - ) = 21T - ) (63)
— —3 —-=
&V _ 27" - 323K (64)
dx ol - 245\71/ E

The relation between the current density E and the electric field at
the emitter is given by equation (63). By setting V =X =1 the con-
dition at the ccllector is given by

3=%+<%——§?)(3?+1)1/2 (65)
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Equation (65) is plotted in figure 19. It is interesting to see that

the emitter field rises rapidly as the current is decreased from space-
charge-limited values. Decreasing the current 10 percent from the space-
charge-limited value causes the field to increase from zero to more than
25 percent of its value in the absence of space charge.

If equation (63) is solved for_specific values of the electric
field Yy and the current density J or, in other words, if 1 = ¥4

and J = Eo are held constant, equation (63) gives a relation between

V and X. By substituting ?o and 5 into (63) and rearranging terms,

o
equation (63) becomes
-3 —=1/2 — =1/2 1/2
_ 27 83,V 1637
Xe—=Ssph+|l——— - Y|+ 1 (66)
5230 9YO 9Yo

Equation (66) is plotted in figure 20. It is seen that the maximum de-
pression of the space potential for space-charge-limited conditions

(3. = 1) occurs at x = 27/64 where the normalized slope is unity. B
o} M Y

using the data cbtained in figures 19 and 20 in eguation (64) the elec-
tric field is obtained as a function of position. This is presented in
figure 21. The normalized gradient is equal to unity in the plane

X = 27/64 independent of the current density Jj. As Brubaker points
out, this is only an approximation. However, the maximum deviation from
unity is only 0.6 percent as the current density is varied from zero to
space-charge-limited values.

Ivey investigated the case of a cylindrical diode under partial
space-charge conditions (ref. 16). In this case Poisson's equation can-
not be integrated directly so a differential analyzer was used to obtain
a numerical solution. Without a rigorous proof, Ivey then states that
it appears that the emitter field characteristic as shown in figure 19
is "universal” and applies also to other geometries, including those
with external emitters. He points ocut also that this seems to be a di-
rect consequence of Poisson's equation, and the only restrictions on the
applicability of figure 19 are those of negligible initial velocities
and an equipotential emitter (the same conditions imposed on the gener-
alized space-charge law).

THEORY CF PIERCE ELECTRODE DESIGN
The problem of design of electrode systems that will constrain an

accelerating ion beam to travel in a desired region has confronted sci-
entists and engineers for many years. Before 1940 most electrode systems
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were designed using assumptions of either zero space charge or paraxial
flow. ©GSince then much progress has been made toward the development of
general methods for the design of electrodes for high-charge-density ion
beams. These methods can be divided into two categories:

(1) Analog methods such as the resistance network and electrolytic
tank

(2) Analytic solution of the space-charge equations and of Laplace's
equation in the region surrounding the ion beam

The most widely used analytic approach to accelerator design was
proposed by Pierce (ref. 17) in 1940. Although the Pierce method was
originally intended for rectilinear flow, it has since been generalized
to include any type of curvilinear flow provided the boundary conditicns
are regular (ref. 18). When the solution to a particular type of space-
charge flow (such as those described in the first section of this report)
is found, it generally will fill all space. To form a beam it is neces-
sary to take a segment of this flow and replace the missing portion with
an electric field that will exactly match the conditions along the stream-
lines bounding the ion beam. This is done by arranging suitably shaped
electrodes around the lon beam. The electrode shapes are found by solv-
ing Laplace's equation in the charge-free space surrounding the ion beam
subject to the conditions of continuity of potential and normal gradient
across the beam edge.

When the space-charge flow can be expressed in terms of some type
of cylindrical coordinate system, as is frequently the case, application
of complex wvariable theory becomes quite useful. This is demonstrated
in sketeh (h). Curve C represents the boundary of a general curvilinear
ion beam that extends to infinity normal to the paper. If an analytic
function can be found which transforms C into the u-axis, then the po-
tential distribution along C and the gradient normal to C will be trans-
formed as shown.




Since harmonic functions remain harmonic under conformal transformation,
a solution of Laplace's equation Tfor the upper half of the W-plane can
be converted to the desired solution in the Z-plane by application of the
inverse transformation. A general solution of Laplace's equation in the
upper-half plane subject to Cauchy boundary conditions is given in refer-
ence 19:

¥

o(u,v) = Redp(W) + Im/ Na(¢)at (67)
0

where
Re real part

Im imaginary part
0

()

/=0

Il

0] potential distribution along v

C

il

NC potential gradient normal to v

In the event that Ng cannot be integrated explicitly as an ana-

1ytic function of W, another technique described by Lomax (ref. 18)
may be used to obtain o(u,v).

Tt can be seen from equation (67) that &(u,v) can be written as
the real part of a complex function:

W
A=0+ 1i¥ = oc(W) - 1 / Na(t)at (68)
0
Hence,
dd
dA C .
i N (W) (69)

By application of the Cauchy-Riemann conditions

asr  ad oo .
— T - = —E + E
W Su Sv u ot

where B, and E; are the electric field components in the u and v

directions transformed from the Z-plane by the mapping function W=7f(Z).
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Specifically, E correspends to the electric field tangent to the beam

u
edge and E, corresponds to the field normal to the beam edge.

Since E, and E, are derivable from an analytic function, they

are differentiable; and the differential equation of a line of electric
flux can be written:

tlj'tlj
<

o

av _
du

Ey £ 0 (70)

The equipotentials are orthogonal toc the lines of force and are there-
fecre determined by the equation

E, # O (71)

QJIQJ
ol 1=
I
|
< e

The condition E, # 0 is always satisfied in cases of interest since
E, = -No(u). By taking the real and imaginary parts of equation (69),

equation (71) can be written:

av Re -(-iw— + IHINC (W ) aA
-— = = cot (arg T

du [ do; ]
Im dT - ReNc(W)

(72)

This is the differential equation specifying the equipotential surfaces.

While this technique is applicable to a large number of geometries,
there are some configurations of interest that cannot be handled in this
way. An example of one of these is rectilinear flow with circular cross
section. The solution of this particular problem will be discussed
later.

Electrodes for Rectilinear Flow (Ny = O)

Rectilinear slab beam. - This is an application of the solution of
flow between infinite parallel planes to the formation of a finite slab
ion beam as shown in sketch (i).
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¥
;r-Electrodes —Lguipotentials
Beam edge
-
= Ton beam Boundary
™ conditions
Beam edge
X
Beam edge
Electrode configuration Mathematical model

(1)

From equation (25) the potential distribution along the beam edge 1is
4/3
°c = O1x / (73)

0y = 6.942x10% aL/342/3

There is no need Tor conformal mapping since the beam edge already co-
incides with the real axis. The boundary conditions to be satisfied are
shovm in sketceh (i). The potential gradient normel to the beam edge Ng

is zero. Therefore, equation (67) has the particularly simple form:

4/3
Redo(Z) = CyReZ /

[S)
Il

Cy(x? + yg)Z/S cos(% tan™t %) (74)

Equation (74) is developed in dimensional form for clarity. It is much
more convenient, however, to nondimensionalize from the start. This may

be done by letting X = x/1, ¥ = y/1, and X = ®C/(Clzé/5) vhere 1 1is
the unit of length. Then equation (73) becomes

¥ = X4/3 (7

(@t
~—
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Sketeh (i) remains the same except that now the boundary conditions are:

X = x4/3 (75)
Nc':%l :O
y=0
and equation (74) becomes
2/3
X = Re(X + iY)é/3 = (X2 + YE) / cos(% tan~1 %) (76)

Equivotentials defined by equation (78) are plotted in figure 22 and
tabulated in table IV. ©Note that the X = O electrode makes an angle
of 67.5° with the beam edge. This is called the Pierce angle, and it
occurs in every geometry because, as the ion emitter is approached
closer and closer, the potential distribution approaches that of a plane
diode. The function X%% is multiple-valued and hence can give rise
tc solutions that do not satisfy the boundary conditions. While it is a
simple matter to chocse the proper solution in this case, it is not so
simple in some of the cases that follow where the complex potential func-
ticn 1s a power series. The coordinates listed in table IV agree with
the curves shown by Pierce in reference 17.

Beams of circular cross section. - The potential distribution has
the same form as equation (73), but in this case polar coordinates are
used and x 1s replaced by 2z:

¢, = 6.942x10% al/342/3 (77)

In 1955 a paper by Daykin (ref. 20) appeared in which a solution to this
problem was described. A sketch of the problem is shown as follows:
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Equation (77) can be nondimensionalized by writing

o o= @) (7e)

where a is the radius of the ion beam. Daykin showed that the poten-
+tial distribution near the beam edge can be expressed by an infinite
gseries of the form

ZAI/51+5‘ZFT+a4c]?r+
= () E) =)+ ) mE) - - (79)
The functions Fs and F, are plotted in figure 23. Because of its

rapid convergence near the beam edge, this series may be truncated at

three ternms without introducing serious error. In order to extend the
solution away from the beam edge the asymptotic forms of the equipoten-
tials are computed. For this purpose it is convenient to define a new
coordinate system in terms of r and z. This is shown in sketch (k).

R = (r2 + ZZ)

la— D
™

(k)

The equipotentials are then written in terms of Legendre functions P4/3

of order 4/5 as

X = (B>4/5 P4/5(cos 0) (8C)

a

Equation (80) is used to obtain electrode shapes far from the beam edge.
Equipotentials from equations (79) and (80) are plotted in figure 24(a)
and tabulated in tables V and VI. The transition region is shown by
dotted lines.

Tor a hollow ion beam another set of electrodes is required inside
the beam. Daykin derived an expression for these equipotentials for
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small r/b where D

be written

o'in

is the inner radius of the beam.

coo- (2T -0 -4

This equation may

(81)

As in the previous case it 1s necessary to fair in part of the equipo-

tentials.
table VII.

Some of these are shown in figure 24(b) and tabulated in
The dotted portion Jjoins the equipotentials from equa-

tion (81) to the proper intercept on the inner beam edge defined by

equation (78).

the Pierce electrode problem for axisymmetric ion beams,

Until recently this was the only analytic solution of

Harker (ref. 21)

has recently developed a very general method whereby any axisymmetric
electrode design problem can be solved with the aid of a digital computer.

Cylindrical flow. - The application of converging and diverging flow

between coaxial cylinders is considered in this section.

figurations are shown in sketches (1) and (m).

Converging flow

~

AN
7—Electrodes

/
/

Beam edge

Beam edge

Electrode shapes

The two con-

~

\7'Equipotentials

!
!

C
Beam edge
2/3
= Co(rg) /
Boundary
conditions
Bl
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Diverging flow

f Electrodes s Equipotentials

Beam edge

o = Cg(rﬁz)z/S

S

Boundary
conditions

Beam edge

Electrode shapes

(m)

Since the included angle of the wedge is «, the current per unit length
from equation (28) will be multiplied by the factor Q/Zﬁ. The potential
distribution becomes

2/3
O = Cz(rﬁz) /
82
o 2y o
Cp = 6.942X10 Al/s(—)
@l
This is nondimensionalized by letting R = r/ro and %o = ®C/(Czrg/5).
The nondimensional potential distribution becomes
2/3
x = (re2)"/ (83)
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From equation (29) it follows that

" 2
(R3%) = ZBn(ln R)”
n=1
and
o 4/z
X = B,(1n R)" (84)

n=

Since the potential gradient Ny normal to the ion beam is zero, the

expression for the potential outside of the beam is, from equation (67),

n=1

where

Z
T

= f; elt - Ret? - R(cos 6 + i sin @)

e} O

Equation (85) can be rewritten

X = (P% + QZ)Z/3 cos(% tan™t %) (86)

where
P - [ln R + 0.1(1n°R - 62) + 0.0167(1n RS - 76% 1n R)
+ 0.00242(1n%R - 66% 1n R + 6%) + . . ]

and

Q = [e + 0.2 6 In R + 0.0167(3¢ 1n®R - 69)

+ 0.00242(46 1n°R - 46° 1n R) + . . J



Equation (86) was solved for several values of X on a digital computer.
Equipotentials for both converging and diverging flow are shown in fig-
ures 26 and 27 and are tabulated in tables VIII and TX, respectively.
This case was also solved by Radley (ref. 22) for convergent flow, and
the results shown in table VII agree with those showm in reference ZZ.

Flectrodes for Curvilinear Flow (Np £ 0)

Circular flow. - The space-charge-limited-flow equations for which
the ion trajectories are concentric circular arcs are used here in the
design of a curved ion beam. This solution was obtained by Lomax in
reference 18. The potential distribution obtained from equation (24) is:

4/3
_ -2 (.. 36
by = Cur Gln 2) (87)
where
2/3
_ 4. 4 2/3
o, - 1.02x10° a3 22 J
bt - at ol
The potential gradient normal to the beam is
%ﬁ . 30 ] 2C, 30 4/3 (58)
T or r5 2

A sketch of the electrode structure is shown as follows:
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From the sketch it is seen that the problem can be divided in two parts:
r>b and r < a. Sketches for these two problems together with the
cd;responding goundary conditions are shown as follows: (The shaded
region is the region of interest in each case. )

C 4/3
b, = ;%(sin %;)4/3 Py = g%(Sin %g)
4/3 2C 4/3
N, = - 325 (Sin _29_) M, = - b—;i(sin %9)
r<a r>b
a b

(o)

In this case it is necessary to map the beam edge onto the real axis.
Lomax shows that a mapping function that will do this is (for r = b)

Z = belW (89)

The boundary conditions become, on v = 0O,

oo (u) 3(sin %)4/3

2C 4/3
Sf.. 3u
Nc(u) = b—z-(811’1 —é—)

The formal solution of Laplace's equation in the upper half of the W-
plane is given by equation (67), which becomes
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W
C 4/3 2c 4/3
¢(u,v) = Re -—g)(sin -B—W) + Im —é(sin §_§_) at (90)
b2 2 B2 2

0

Explicit integration of the second term is not readily carried out;
therefore, the differential equation representing the equipotentials
mst be solved. By combining equations (69), (72), and (90), the dif-
ferential equation becomes

3
tanh = v
av 1 -1 2 3
o = cot|3 tan Z -3z u (91)
tan - u
2
From the transformation equation (89) it follows that
R:%:e_v
and
6 =u
Equation (91) becomes in the Z-plane
as 3 1, -1f1 - R° 30
R — = tan|= 9 - = tan (== Jcot = (92)
dR 2 3 1 + RS 2

Equation (92) was integrated using the Runge-Kutta method, and some
typical equipotentials are shown for a/b = 0.7 in figure 27 and are
tabulated in tables X and XI. The inside equipotentials were found by
simply replacing b by a in equations (89) and (92). In figure 27
%y = ®(b2/C5) and Xy = ®(az/03). These results agree with those ob-
tained by Lomax in reference 18.

Flectrodes for hyperbolic flow. Sketch (p) shows a segment of
hyperbolic flow bounded by the curves y = l/x and lO/X. This solu-
tion was obtained by Rosenblatt in reference 12,
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Beam edge
A

Beam edge}J ’
S

(p)

The potential distribution along the beam edge as given in the space-

charge-flow section is
3 2
- - £ A
o = Cé[; + (x) ]

where

E;)Z/B

¢, = L.eoxio® Al/s(kz
and
A =1,10
The sclution of Laplace's equation outside the ion beam in the upper
part of the first quadrant (i.e., outside the boundary » = 10) will be

obtained first. It is shown in reference 12 that a transformation that
will map the beam boundary onto the real axis is:

W o= % (2% - 2i0) = u + iv )
u ___12-_ (X2 _ y2) > (95)
Vo= Xy - A J
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A sketch of the transformed boundary is shown as follows:

Boundary conditions

W= pla e ( ) (u o )

W=u+ iv -
Nc(u) = —2041(u2 + %2) 1/2

A

-Z2A1

(q)

The transformed boundary conditions are also shovmn. ZEquation (87) may
now be used:

W

olu,v) = Re [-27\,(w2 + xz)l/z] + Tm [—2047\@2 + 7\2)-1/2]d§

h (94)

After integration and separation of the real and imaginary parts the
equipotentials in the W-plane are expressed by:

o(u,v) = -2C,

1/2
{[(u2 + N - V2)2 + 4u2V2]l/2 + (08 + A2 - vz)} /

Sl

1/2
2 1/2
v o+ ——_\]/“—E{[(uz + 22 - v &+ 4u2v2] / - (u? + 2% - v2)
+ A tan'l 1/2
1 2 . a2 _ o238 2 2]1/2 2 .2 .2
u + :7: (u® + A& = v&) + 4ucv + (u® + A® - vo)
2

(95)
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This equation may be nondimensionalized by dividing equation (95) by
-C,A\. Substitution of the values of u and v from equation (93) yields

the expression for the electrode shapes in the (x,y) plane. Some of
these are plotted in figure 28, Eqguipotentials outside the beam edge

A =1 may be obtained by the mapping W = % (2in - ZZ). The potential
function is identical to equation (95) except for minus signs in front
of the nonsquared u and v in the arc tangent term. BSome electrode
shapes for this boundary are also shown in figure 28.

Since there is no zero velocity surface in this configuration, it
may not have any practical application., It may possibly be used to de-
flect an ion beam, however.

Limitations of the Pierce Technique

The departure of analytically derived ion accelerators from physical
fact lies mainly in two areas. The first of these is that practical re-
quirements dictate modifications in the calculated electrode shapes.
These modificaticons manifest themselves in the curtailment of electrode
size and the insertion of apertures in the electrocdes to pass the ion
beam. The inherent instability in the solution of elliptic differential
equations with Cauchy boundary conditions on open boundaries works in
reverse to minimize the error caused by curtailment or modification of
electrode shapcs away from the boundary. This means that, while small
variations of potential along the boundary will cause increasingly larger
variations the farther away from the boundary, conversely, large varia-
tlons far away from the boundary cause only small variations along the
boundary. This is readily observed in an electrolytic tank where a
tremendously wide variety of electrode shapes will give the proper po-
tential distribution along the beam edge tc within the accuracy of the
measuring equipment. It is difficult to give exact numbers for the
magnitude of thic effect other than to say that the error propagates

away from the boundary approximately as eKy, wnere y 1s the distance
measured from the boundary and K 1s a constant.

Aperture effect, - Insertion of apertures in the electrodes has two
deleterious effects on ion accelerator performance. The first is that
the aperture acts as an electrostatic lens which will tend to diverge an
accelerating ion beam. If multiple electrodes are being used, this re-
sults in impingement of ions on the electrodes. Even if only one accel-
erating electrode is used, the formation of a diverging ion beam will
result and may cause some impingement on this electrode. Tt is shown in
reference 23 that the focal length of an aperture is

-2gd

f:
By

(96)



where g = 1 for slits, g = 2 for circular apertures, and K, is the

negative potential gradient on the upstream (or source) side of the
aperture. The meaning of this is demonstrated in sketch (r).

= o= 0

(r)

The second effect is to reduce the ion current by increasing the
effective accelerating distance. Depending on the ratio of aperture
width to accelerating distance, experimentally observed current densities
can be a small fraction of the theoretically expected values.

Emitting surface irregularities. - The second area of departure of
the Pierce theory from physical fact lies in the assumptions regarding
initial conditions at the ion emitter. The usually assumed condition of
zero initial velocity along a perfectly smooth equipotential surface is
not met in practice, and it will be shown that considerable error can
arise as a result of this. Rather than treat these effects separately,
the nature of the ion trajectories in the neighborhood of a rough emitter
will be investigated, and dispersion due to transverse electric fields
will be compared directly with thermal spreading. In order to do this
it is first necessary to examine the potential distribution near a sur-
face irregularity. A sketch of the mathematical model is shown as
follows:




The surface irregularity is a cylindrical hump of radius 1, and it
is assumed that at 100 units gbove the hump the equipotentials are es-
sentially plane. An approximate expression for a flux line as computed
in appendix B is (u/1) = (X/Z){l + l/[(x/2)2 + (y/l)z]}. The bounding
flux line, which originates at the point x =1, y = O, is (u/Z) = 2.
This line intersects the line y = 1007 at x = 21. Hence, the flux
line spreading due to the electrostatic field of the hump is ~Ax =~ 1.

It is shown in appendix B that thermal spreading Lxp at  y = 1001,

which 1s the product of the most probable thermal velocity and the ion
transit time, can be written Axp = 20014/0.1/9, where the effective

thermal potential is assumed to be O.1 volt. The ratio of electrostatic
te thermal spreading is

AY'S Po

— = = (97)
£ 410

The macroscopic electric field strength E din an ion rocket is defined
as the applied accelerating voltage divided by the accelerator spacing.

For emission-limited flow E usually has a value of between 10° and 107
volts per meter. From sketch (s) it can be seen that the voltage across

the model <, can be written @, = E(1007), and the spreading ratio be-
comes

AN JOyA

AxT' 40 (o8)

Bquation (98) is shown plotted in figure 29. It is seen from figure 29
that spreading due to the electrostatic field of a surface irregularity
can be of the same order of magnitude as thermal spreading. It should
be noted that this analysis is based on zecro space charge and therefore
i1s only approximate.

Analysis of accidental misalinement of parallel planar electrodes. -
As pointed out by Ivey (ref. 10), an accidental misalinement of parallel
planar electrodes can be analyzed as an application of the moction be-
tween two inclined planar electrodes. Consider the electrode arrangement
as shown in sketch (t):
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(t)

One electrode is tilted about its center by an angle o« from the paral-
lel condition and

@
D

sin «

The current per unit length when o = O may be written

Jo=0 1 (2q 1/2 43/2,, (59)
779 “o\m -2
and thus the ratio J/J@:O’ which gives the effect of the tilt, is
J__ H(e) (100)

2

J@:O ( 1 2 w
sin o T \2s

Values from equation (100) were calculated by Ivey for small angles of

o and are presented in figure 20, TFor a rectangular emitter with an
aspect ratio of w/s = 1.24, the current per unit length is insensitive
to the angle of tilt about a line passing through its center and parallel
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to its side. Ivey also showed the independence of angular misalinement
in an arbitrary direction by the use of a disk-shaped emitter. The total
current for o = 0O in this case is

29)1/2 $3/2,p2 (100)

4
J =0 = = € (
a 9 "O\m 452

where D is now the dismeter of the disk, and the effect of electrode
tilt becomes

1

-1
R Ve
1 - D sin «
2s
Values from equation (102) were also calculated by Ivey and are presented
In figure 31. It is seen that the variation of current for the aspect

ratio D/s = 1.42 1s zero. TFor this optimum geometry (aspect ratio
D/s = 1.42) equation (101) becomes

(102)

5 1/2
Joo = 6.235X10‘12(—9) 93/2 (103)
= m

and the behavior of J/Jd;o for the above optimum geometry is shown in

figure 31. Tt is seen that even a large angle of tilt does not change
the total current appreciably. This, of course, does not mean that the
ion optics will not be affected, and in an ion rocket the ion impinge-
ment on the electrodes must be reduced to nearly zero for long-duration
cveration. Therefore, electrode alinement is still quite eritical.

CONCLUDING REMARKS

Three methods for the analytic solution of the space-charge-flow
problem appear in the literature, in which certair properties of the
flow are prescribed. These are (1) initial and final equipotentials,

(2) velocity and acceleration, and (3) trajectories and action function.
None of these methods is generally applicable at present. Of the three
methods, the trajectory-action function method appears the most versatile
for the design of electrostatic rocket engine accelerators.

The existing solutions of space-charge flow have been described,
and the parameters pertinent to the design of electrostatic rocket engine
accelerators have been given for the following geometries: (1) paraxial
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flow, (2) flow between coaxial cylinders, (3) flow between concentric
spheres, (4) circular flow, (5) hyperbolic flow, (6) flow between in-
clined »nlanes, and (7) flow between coaxial cones.

Electrode shapes determined by the method of Pierce have been given
for the following geometries: (1) rectilinear flow with rectangular
cross section, (2) paraxial flow with circular cross section, (3) con-
vergent Tlow between coaxial cylinders, (4) divergent flow between co-
axial cylinders, (5) circular flow, and (6) hyperbolic flow.

Liritations of the space-charge-flow and electrode design theories
have been discussed. One is the aperture effect and another is the ef-
fect of irregularities on the ion emitting surface. Surface irregular-
ities have been demonstrated to cause lateral ion velocity components of
the same order of magnitude as thermal ion velocities.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohic, August 20, 1962
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APPENDIX A

SYMBOLS
(mks units used throughout. )

molecular weight/ionic charge (ionic charge may be greater
than one in multiply charged ions)

inner radius of circular ion beam; outer radius of ion
beam with circular cross section

(hghS/hl)vz(l/hf)

outer radius of circular ion beam; inner radius of ion
beam with circular cross section

hghg/h%; also 1on beam edge

constants identified in text

diameter of disk emitter

S/sin a, for electrode tilt analysis

electric field strength, volts/meter

unit electronic charge, 1.602x107 19 coulomb
dimensionless functions of r/a defined in ref. 16
function defined in eq. (50)

function defined in eq. (43)

gravitational conversion factor, 9.806 m.eters/sec2

function defined in eq. (100)

scale factors in curvilinear ccordinates,

2 2 5.2 2 ;2 2 ..2
ds” = hy 4" + hy dn” + hz at
imaginary part

total current, amp



Vs Vg

<

P
=4

X, Y

43

current per unit length, amp/meter

current density, amp/meter2

(hghz/eq)i~/m/2q

accelerator height, meters; also unit of length

particle mass, kg

potential gradient normal to boundary C

charge, coulombs

r/ro, r/ra, r/rb

real vpart

radius as in spherical and cylindrical polar coordinates

emitter radius; alsc initial radius of trajectory in flow
between inclined planes; also inner radius in circular
flow englne

accelerating distance for electrode tilt analysis

function defined in eq. (52)

differential displacement along a trajectory

coordinates in W-plane (W = u + iv)

ion veloclty

velocity components in Cartesian coordinates

velocity components in polar coordinstes

acceleration vector

most probable thermal velocity

action function, meterB/sec; also complex number u + 1v
tilt analysis

nondimensional Cartesian coordinates



X, ¥, % Cartesian coordinates

v(6) function defined in eq. (39)

VA X + iy

7 X - 1y

o Langmuir function for spheres; angle between inclined

planes; arbitrary fixed angle

Ay st conical half-angles

B Langmuir function for cylinders

r née

Y angle between lon trajectory and flux line in flow between

coaxial cones

€ permittivity of free space, 8.855x107 1%
coulomb/(newton)(meterz)

e curvilinear coordinate defining trajectories

e angular displacement, deg

A complex potential function, ¢ + 1i¥

A hyperbolic trajectory parameter

E curvilinear coordinate defining action function

o charge density, Coulomb/meter5

o Py - P

O potential distribution along beam boundary

Y angular displacement in spherical coordinates; also poten-
tial, wvelts

T emitter potential, volts

X nondimensional potential distribution
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Superscripts:

[ LR B R A
r 2 >

45

flux line

angle between ion trajectory and flux line for flow between
coaxial cones

differentiation with respect to variable 8
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APPENDIX B

APPROXIMATE ION BEAM DISPERSION DUE TO SURFACE ROUGHNESS

In this appendix the electric field in the neighborhood of a cylin-
drical hump will be cbtained. Following that the transit time of an ion
through the dicde will be calculated, and an expression for thermal
spreading, which 1s the product of the mest probable thermal velocity
and the ion transit time, will be showm.

iy iv
A

o =20 1001

0 o=@ /7\
o} 4 x u

(u)

The surface is an infinite plane containing a ecylindrical hump of radius
1. It is assumed that at a distance y = 1001 the equipotential sur-
faces are plane. By the conformal transformation w = z + 1/z the sys-
tem is converted into two plane electrodes separsted by a distance of
99.99 1. This is shown on the right side of sketch (u). The space-
charge-free potential distribution in the W-plane is

plu,v) = CPO(l - 55—};-5—0 (B1)

The electric field is obtained by differentiation of equation (Bl) with
respect to wv:

d NS

=820
E dv ~ 99.99 1 (32)
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Returning to the right side of sketch (u) the flux lines are given
by u/Z - constant. From the transformetion equetion the expression for
u/1  is

This equation is used in the computation of spreading due to the electric
field of a surface irregularity.

In the computation of transit time through the diode in sketch (u)
(left side), it is assumed that the electric field is constant; that is,

£ = 601 (B4)
The equation of motion of an lon is
dzy qqﬁ;o
m—=—<L = gE = —— (BS)
a2 1001
Integration of equation (BS) subject to the initial conditions of
Ay ~ _
e 0 at t =0
and
y =0 at t =0
yields
%y 2
= —t B
J = 200m1 (56)

At y = 1001 the transit time is

£ = 1001 ‘/-2-3“— (B7)
)

o]
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From reference 24 1t is seen that the most probable thermal velocity is

7. oy
-y (50)
where E is the mean thermal potential (usually taken to be about 0.1

volt). Thermal spreading is then the product of equations (B7) and (BS):

Ly = zoon—?— = zooz‘/&l (B9)
Po To
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APPENDIX C

RESCALING CF NOMOGRAMS

The nomograms shown in this report may be easily rescaled to allow
computations beyond the range of one or more of the variables. Consider,
for example, the nomogram in figure 1, which represents the space-charge-
flow equation for a plane diode. The equation is

5= seena0m® AT, - )/ B R (26)

The ranges of the various scales are
4
10 < A <107

2 x 10 < J < 10°

1074 < x <1077
107 < (g - o) < 10%

Suppose that it is desired to calculate the current density for heavier

particles, say up to 107 amu. This means that the new range of the A
scale will be from 102 to 10° amu. It is seen from equation (26) that,

if (o, - ©) and x are held constant and if A 1is miltiplied by 102,

then J will be divided by 10. That is, there exists a scale factor
associated with A which, when multiplied by the range of J, will give
the new range. In this case, K, = 10"+ and the nev range of J will

be

2 <J< 107
Usually it is necessary to rescale several variables simultaneously.
This may be done in a similar manner. Suppose, for instance, that the

desired ranges are to be changed in accordance with the following list:

10 < A < 10° » 105 < A <107

2x10<J<10° » 2<T<?



107% < x <1072 5 1072 < x < 10°

102 < (¢ - ) < 10% - 10% < (g - @) < 10°

Referring again to equation (26) it is seen that scaling factors may be
assigned to each variable. For instance, it was shown that the scaling

factor KA due to a hundredfold increase in A 1is lO‘l. The net scal-

ing factor applied to J will be the products of the individual factors.
Trese are

|
K, = 10

_ 14
Ky = 10
K. = 10°

and finally

_ _ -2
KJ = KAKXK® = 10

Therelore, the new range of the J scale will be

2x107F < 7 < 10



1.

10.

11.

lz.
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TABLE II. - LANGMUIR FUNCTION FOR CONCENTRIC CYLINDRICAL FLOW
r/ro BZ r/ro BZ r/rO 52 r/ro BZ

0.01000 [1174.3000 | 0.2500 | 6.06010 [ 1L.00 | 0.00000 4.0 | 0.6671
.01111 [1018.5000 .2632 | 5.37350 | 1.01 .00010 4.2 .6902
.01250 | 867.1100 L2778 4.72980 | 1.0z .00033 4.4 L7115
.01429 | 721.4300 .2941 | 4.11260 | 1.04 .00143 4.6 L7313
.01667 | 582.1400 .3125 | 3.529320 1 1.06 .003z4 4.8 L7496
.02000 | 450.2300 L3333 1 2.98140 | 1.08 .00557 5.0 . 7666
.02500 | 327.0100 .3448 1 2.72140 | 1.10 .0084z 5.2 .7825
.03333 | 214.4200 L3571 | 2.47080 ¢ 1.15 .01747 5.4 L7973
.05000 | 115.6400 L3704 | 2.23010 | 1.20 .02875 5.6 .8111
.05556 97.9970 .3846 | 1.99950 | 1.30 .05589 5.8 .8241
.06250 | 81.2030 L4000 | 1.77920 1 1.40 .0867z 6.0 .83%62
.07143 1 65.3520 L4167 | 1.56870 | 1.50 .11934 6.5 .8635
.083331 50.5530 .4348 1 1.37120 | 1.60 .15250 7.0 .8870
.10000{ 36.9760 .4545 ] 1.18400 | 1.70 .18540 7.5 .9074
.10530 | 33.7910 L4762 | 1.00860 | 1.80 21770 8.0 .9253
.1111C0 | 30.6980 .5000 .84540 [ 1.20 .24810 8.5 .9410
.11760 | 27.7010 .5263 .69470 | 2.00 .27330 2.0 .9548
.12500 | 24.8050 .5556 .55720 | 2.10 .30830 9.5 .9672
.13330| 22.0150 .5882 .43320 | 2.20 .33610 | 10.0 .9782
.142901 19.3370 .6250 .32330 4 2.30 36260 | 1lz.011.01z2
.15380} 16.7770 6667 .22820 | 2.40 .38790 1 14.011.0352
.16670 1 14.3420 L7143 .14856 | 2.50 .41210 | 16.0}1.0513
.17240 | 13.4070 .7692 .08504 | 2.60 .43510 | 18.0 | 1.0630
.17860 | 12.4930 .8333 .03849 | 2.70 .45710 | 20.0 | 1.0715
.18520| 11.6010 .86986 .02186 | 2.80 .47800 | 30.0 | 1.0908
.192301 10.7330 .9091 .00980 | 2.90 L483800 1 40.0 ) 1.0946
.20000 9.8887 .5258 .00630 | 3.00 .51700 50.0 | 1.0336
.20830 9.0626 . 9434 .00356 | 3.20 .b5260 | ©80.0 | 1.0810
.21740 8.2763 .9615 00159 { 3.40 .58510 | 70.01.0878
22730 7.5096 .9804 .00040 | 3.860 .61480 | 80.0 | 1.0845
.23810 6.7705 . 3901 .00010 | 3.80 .64200 | 90.0 | 1.0813
1.0000 .00000 100.0 | 1.0782




TABLE III. - LANGMUIR FUNCTION FOR CONCENTRIC SPHERICAL FLOW
r/ro ol r/ro al r/ro ol r/ro ol

0.01000 | 1144.000 | 0.2500 | 4.9680 | 1.00 | 0.0000 4.2 10.979
01111 974.100 L2832 | 4.4290 1 1.05 .0023 4.411.022
.01250 813.700 27781 3.8130 1 1.10 .0086 4.6} 1.083
.014283 663.300 .2941 | 3.4210 ) 1.15 .0180 4.811.103
.01e67 523.600 L3125} 2.9540 | 1.20 .0299 5.0} 1.141
.0z000 395.300 .3333 | 2.5120 | 1.25 .0437 5.211.178
.02500 279.600 .34481 2.3020 | 1.30 .0591 5.4 1.213
.03333 | 178.200 .3571 ] 2.0980 | 1.35 .0756 5.6 1.247
.05000 93.240 .3704 | 1.2010 4 1.40 L0931 5.811.280
.05556 78.560 .3846 | 1.7120 | 1.45 1114 6.0 1.311
.06250 64.740 .4000 | 1.5310 | 1.50 .1302 6.5 1.385
07143 51.860 L4167 | 1.3580 | 1.60 .1688 7.0} 1.453
.08333 39.980 L4348} 1.1930| 1.70 .2080 7.511.516
.10000 22.190 .4545 | 1.1036 | 1.80 .2480 8.0 1 1.575
.10530 26.680 L4162 .8880 1 1.90 .2870 8.5 1.630
.11110 24.250 .5000 L7500 | 2.00 .3260 9.0 | 1.682
.11760 21.890 0263 .6210 | 2.10 .3640 9.5 1.731
.12500 19.620 .5556 .5020 | 2.20 .40z0 10.0 | 1.777
.13330 17.440 .5882 L3940 | 2.30 .4380 12.0}1.938
.14290 15.350 .6250 .2968 1 2.40 L4740 | 14.0 | 2.073
.15830 13.350 .6667 .2118 | 2.50 .5090 16.0 | 2.189
.16670 11.460 .6897 .1740 | 2.60 5430 18.0 1 2.289
.17240 10.730 L7143 L1396 | 2.70 .5760 20.0 | 2.378
.17860 10.010 L7407 .1084 | 2.80 .6080 30.0 | 2.713
.18520 9.315 L7622 .0808 | 2.90 L6390 40.0 | 2.944
.19250 8.635 .8000 .0571 | 3.00 L6690 | 50.0 1} 3.120
.20000 7.2976 L8333 L0372 1 3.20 7270 60.0 | 3.261
.20830 7.334 .8696 L0213 | 3.40 . 7830 70.0 | 3.380
.21740 6.712 L9021 .0096 | 3.60 .8360 80.0 | 3.482
.22730 6.109 .9524 .0024 ] 3.80 .8860 90.0 | 3.57z2
.23810 5.528 | 1.0000 .0000 | 4.00 .9340 | 100.0 | 3.652
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TABLE IV.

- ELECTRODE COORDINATES

FOR RECTILINEAR SLAB ION BEAM

—
Y X X
X =0 X=0.4 | X=1.0
0 0 0 1.0000
.1 .04141 .50626 | 1.0017
.z .08283 .01578 1.0066
.3 12425 .5307z2 1.0147
o4 .16567 .55009 1.0258
) .20708 .57298 | 1.0395
.6 .24850 .09864 | 1.0558
7 .2899¢ .62648 1.0743
.8 .33133 . 65607 1.0947
.9 37275 .68708 1.1169
1.0 .41416 71924 | 1.1406
2.0 .82833 1.07580 | 1.4338
3.0 1.24250 | 1.46010 | 1.7793
4.0 | 1.656870 | 1.8549%0 2.1477
5.0 2.07080 2.25520 2.5285
6.0 2.48500 2.65870 z2.2167
7.0 2.89920 | 3.06440 | 3.3100
8.0 | 3.31330 3.47150 | 3.7067
9.0 | 3.72750 3.87370 4.1061
10.0 4.14160 4.28870 4.5075




TABLE V.

- ELECTRODE COORDINATES FOR

RECTILINEAR ION BEAM WITH CIRCULAR

CROS5 SECTION NEAR BEAM EDGE

R z/a
X=0]X=0.5]X=1,0 | X=2.0
1.00 0 0.593 1.000 1.683
1.25 .611 1.009 1.687
1.50 .649 1.033 1.702
1.75 .699 1.072 1.727
2.00 .751 1.115 1.756
2.5 .804 1.161 1.791
2.50 .852 1.211 1.830
2.75 .898 1.259 1.872
3.00 .932 1.310 1.915
3.25 .951 1.355 1.959
3.50 1.400 z.007
3.75 1.441 2.052
4.00 1l.482 2.099
4.25 1.51z2 2.146
4.50 1.540 2.188
4.75 1.551 2.237
5.00 1.540 2.278

o7
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TABLE VI. - ELECTRODE COORDINATES FOR RECTILINEAR ION BEAM

WITH CIRCULAR CROSS SECTION AWAY FROM BEAM EDGE

z/a r/a z/a r/a z/a r/a z/a r/a

X =0 X = 0.5 X = 1.0 X = 2.0

0.2728 | 0.962 0.659 0.751 1.000 0
5456 | 1.924 .870 | 1.801 | 1.173 | 1.619 1.730 | 0.994
.8184 | 2.886 1.108 2.788 1.384 2.667 1.904 2.314

1.0210 | 3.848 1.356 3.767 1.611 3.660 2.104 3.400

1.3640| 4.810 | 1.609 4.733 1.849 4.644 2,317 4.429

1.683681 5.77z 1.873 5.705 2.102 5.625 2.541 5.4z29
1.9096 ] 6.734 2.131 6.666 2.347 6.580 2.777 6.425
2.1824 | 7.697 2.393 7.633 2.599 7.564 5.010 7.409
2.4550| 8.659 2.660 8.599 2.857 8.536 3.201 8.391
2.7280| 9.621 2.929 9.561 3.120 9.505 3.504 9.371




TABLE VII.

- INNER BELECTRODE COORDINATES

FOR HOLLOW CYLINDRICAL ION BEAM

z/b

r/b

X = 0.5

X =1.0

X

2.0

> O
[eNeoNoNe]

o
@ o >N

ISR BRI o

Omao;0n

&1 .00000
.57984
.50662
.40454
.29523

19681
.12003
.06687
.03405
.01584

.00093
.00008
0]
0]

.60653
.00674
0
0

P71 ,00000
.94153
1.09360
1.10880
1.00150

-81254
.59487
.39410
.23669
.12904

.01181
.00150
.00013
.00001

.60653
.06393
0
0

€1.00000
1.52880
2.36070
3.03930
3.39730

3.35290
2.94820
2.32260

1.05100

.14981
.02501
.00284
.000z2

.60653

.60653

.00001
0]

1.64540 ¢

d1 .00000

4.03090
11.00100
22.83400
39.09300

57.09100
72.41500
80.67000
79.51700
69.72300

24.12400
6.98090
1.33890

17162

.60653
.54598
.01480

@At beam edge
bAt beam edge

CAt beam edge

dat bean edge
fig. 24(b)).

z/b
z/b

z/b
Z/b

Il

fig. 24(b)).

il

1

fig. 24(b)).

0 (see fig.
0.5946 (see

.000 (see

1.6818 (see

24(b)).
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TABLE VIII.

- CONCLUDED.

CONVERGING CYLINDRICAL FLOW (r/rq < 1)

EILBECTRODE COORDINATES FOR

0.8

1.0

6.96092T1E-03
1.3918603E-02
2.0869779E-02
2.7811222€~-02
3.4739711E-02
4.1652042E-02
4.8545030€-02
5.5415553E-02
6.2260466E-02
6.9076721E-02
1.0262334E-01
1.3501944E-01
1.6594096E-01
1.9510403€E-01
2.2226539E-01
2.4722046E-01
2.6979982E-01
2.8986560E-01
3.0730811E-01
3.,2204290E-01
3.3400864E-01
3.4316571E-01
3.4949506E-01
3.5299808E-01
3.5369632E-01
3.5163151€-01
3.4686594E-01
3.3948213E-01
3.2958314E-01
3.1729210E-01
3.0275180E-01
2.8612359E-01
2.675864T7E-01
2.4733526E-01
2.2557906E-01

6.0113725g-01
6.0120879E-01
6.0142340€E-01
6.0178094E-01
6.0228104E-01
6.0292333E-01
6.0370734€-01
6.0463250E-01
6.0569791E-01
6.0690294€-01
6.0824649E~-01
6.1700452E-01
6.2903718E-01
6.4413850€E-01
6.6206996E-01
6.8257217E-01
7.0537417€-01
7.3020023E-01
7.5677392E-01
7.8482060E-01
8.1406850E-01
8.4424926E-01
8.7509794E-01
9.0635314£-01
9.3775697€E-01
9.6905564E-01
1.0000001E 00
1.0303469E 00
1.0598599¢E 00
1.0883116E 00
1.1154850E 00
1.1411756€ 00
1.1651936€ 00
1.1873662E 00
1.2075390E 00
1.2255792€ 00

0.

5.7926631€-03
1.1582931€-02
1.7368407€-02
2.3146702E-02
2.8915439E-02
3.4672235E-02
4.0414739E-02
4.6140609E-02
5.1847492E-02
5.7533106€-02
8.5562512E-02
1.1272692E-01
1.3876833E-01
1.6345069E-01
1.8656168E-01
2.0791291E-01
2+2733941€-01
2+.4469884E-01
2.5987023E-01
2.7275310E-01
2.8326694E-01
2.9135070E-01
2.9696273€-01
3.0008121E-01
3.0070402E-01
2.9884966E-01
2.9455707E-01
2.8788637E-01
2.7891851E-01
2.6775547E-01
2.5451967E-01
2.3935304E-01
2.2241644E-01
2.0388784E-01
1.8396113E-01

6.6808197E~01
6.6813859€-01
6.6830828E-01
6.6859109e-01
6.6898677E-01
6.6949506E£-01
6.7011576E-01
6.7084841E-01
6.7169255E-01
6.7264785E-01
6.7371358E-01
6.8067639E-01
6.9028537€E-01
7.0241039€-01
7.1689513E-01
71.3356234E-01
7.5221908E-01
7.7266063E-01
71.9467334E-01
8.1803695E-01
8.4252597E-01
8.6791050E-01
8.9395707E-01
9.2042912E-01
9.4708763E-01
9.7369186E-01
1.0000001E 00
1.0257705E 00
1.0507622E 00
1.0747361E 00
1.0974551E 00
1.1186845E 00
1.1381906€& 00
1.1557378E 00
1.1710823E 00
1.1839612E 00
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Flgure 8. - Diverging flow between concenirls spheres. J = 8.87x10’7A‘1/2(m - )
for r > rg; note that 1 = S/arr?.  {8ee appendix C for rescaling.) ;
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ius ratio, r/ro
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Figure 11. - General trajectory plot for flow between in-

clined planes (egs. (41) and (48)).
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Figure 13. - 3pace-charge-limited flow between Inclined planes.

i = 5.467x1078471/2( - cp)3/2r-2[ri F(o)|.
o

(See appendix C for rescaling.)
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jectory radius ratio, r/ro
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(See appendix C for rescaling.)
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Potential ratio, CP/QD
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Normalized electric field, dv/dX
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Figure 23.
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